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ABSTRACT

Consideration is given to the problem of determining the distribution
of stress in a ccmposite solid corsisting of two half-planes (of different
elastic moduli) joined together when there is a praoscribed distribution of
body forces acting in one of them., Included are the following cases:

1. where one half-plane rests on the other, maintaining contact

along their common boundary;

2, where the two half-planes are bonded together;

3. where an imperfect bond leaves a Griffith cratk at the interface;

4,

where the lower half-plane is completely rigid.




THE TRANSMISSION CF FORCE BETWEEN TWO HALF-FLANES

by

Ian N. Sneddon

1. Introduction.

In this paper we consider the problem of determining the distribution of
stress in a composite solid consisting cf two half-planes (of different elastic
moduli) joined together, when theve is a prescribed distribution of body forces
acting in one of them. Particular cases of the problem have been considered previously
by Frasier and Rongved [1] and by Dunders [2].

It is assumed that in the upper half-plane y > 0 which is occupied by elastic
material with rigidity modulus Gl and Pcisson's ratio " there is a prescribed
distribution of body forces, and that there is a displacement fieid {u:(x. ¥,

u;(x, y)} which has the correc:i singularities to describe this distribution. We

consider the case of plane stra:n in which it is natural to :8ke G, and x, = 3 - 4n1

1
as the elastic constants. The advantage in this choice of constante is that
the results for plane stress take exactly the same form except th=t in this case
Ky ® 3 - nl)/(l + nl). The lowe: half-plane y < 0 1s assumed to be occupied by
an elastic material with constar:s GZ and Ky

In §3 we consider the siruaricn in which one half-piane rests on the other
ard derive formulae for the calcula.ion 2f the displazement and stress fields in
termes of the prescribed displ:cemenrt vector g?. It 15 assumed that the two half-
planes remain in contacc slong the entire length of thei: <common boundary.
These formulae take much simpier torms if the displacement vecrtos 2?, which. is

arbitrary apart from the fast thar i* must have the right kind cf singularities

to account from the prescrited disvr-buzion of body fovces, iz ~h»sen in such a

way that u;(x, 0) =0 and o:y(x, G - 0 (This can often be achieved by the use




of an "image" method of the kind represented pictorially in Fig. 1). In this

case, for instance, we obtain the formula
o
X, 0~) = x, 0+) = Do__ (x, O (1.1
°yy(’ ) oyy(, ) yy(.) )

where D is the constant defined by the equation

(Kl + T

D = ——t=
(Jcl + 1)r + (<2 + 1)

(r = G2/Gl) s (1.2)

To illustrate the use of the formulaa we consider the problem of calculating the

stress field due to a point force (X, -Y), (X > 0, Y > 0) acting at the point
(0, ¢), ¢ > 0, in the upper half-plane.

In §4 we consider the situation in which the two half-planes aie bonded
together. The formulae are now mucht mcre complicated. For instance, even in
cthe eymmetrical case in which u;(x, 0) = 0 and ciy(x, 0) = 0 the formula
corresponding to (1.1) is of the form

aux(x, 0)

0
oyy(x. 0-) = D, cyy(x. 0) - D,G, =

where D, and D, are numerical constaats (cf. equation (4.5) below). Again, the
method is illustrated by deriving the formula appropriate to the case in which
a polant force acts in the upper half-plane,

In §5 we consider the situation in which the bonding between the .wo half-
planes 1s not perfect but leaves a Griffith crack at the interface of the two
half-. ‘anes. It is shown that the solution of the problem in which the crack
is openst out by the application of prescribed internal pressure can be reduced
te that of a set of four gimultaneous dual integral equations.

Fiaally, in 56 we discuss the special case in which the lower half-plane

ig completely rigid.
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2. The Basic Solutions of the Equilibrium Equatioas in thc Case of Plane Strain.,
By the use of the Four.er transform (see, e.g., [3], p. 404) we can show
that the equations of plane strain have solution
-1 2%x 2
u (x, y) = iF*[g {(c+ D=5+ (3 -~ X} 5 £ + xl (2.1)
ay
-2 33}( 2 X
u(x, y) =Flg {(k+D—73-G+de 57 56+ x (2.2)
y 3y y
where the function X(£, y) satisfies the equation
2 2|2 ]
—.—2- - E X(g’ y) = (0, (2.3)
dy
The c.nstant k is defined in terms of the Pocisson ratio n .hrough the equation
K =3 - 4n (2.4)
and F* denotes the operator defined by the equation
1 [ i€
-1iEx
* . = .
F*(£(g, y); & » x] Ty f‘w f(g, yle dg (2.5)
i.e. it 1is the inverse of the operator F defined by
, i i
Fly(x, v)3 x » £] = == | ¢(x, y)e o* dx. (2.6)
v(2m) e
If we take for X the function
X(g, y) = %K-l I€{~2{%(K - 1A + %(K + 1)b - (A - B)[E;[y}e-lgly (2.7)

we obtain the displacement field

ux(x, y) = F*[ig~lf\ - x—l(A - B)[gly}e—lg'y; £+ x] (2.8)

. casne
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u (5, 3) = 1)L - < Lea - By |glyre 6175 £ o xl

which is such that

u (x, 0) = F[i£TAE); x]

u (x, 0) = Fx[|g|7'B(e); ]

oxy(x, 0) = e Fx[1 sén g{(x+ 1AE) + (¢ - 1)B(E)}; x]
55y 0) = =76 FA[(x - DA + (« + DBE); x],

In the two latter equations G denotes the rigidity modulus.

On the other hand, if we take for X the function
X, y) = %K—llil-z{%(K - 1A - %(K + 1)B + (A + B)Igly}eIgly
we obtain the displacement field
u (x, y) = FR[15 (A + « T(A + B)Ialy1e|£|y; £ -+ x]

l(A + B)l&ly}e'gly; £ -+ x]

u G y) = P[] B -
which is such that
-1

u (x, 0) = F¥[iETAE); x]
-1

u (x, 0) = F*[|g| "B(g); x]

Y6 Fx[1 sgn £((x+ DAE) - (x - 1)B(E)}; X,

Oxy(xa 0)

—<Le FR[(¢ - DAG) - (x + 1)B(D); x].

o (x, 0)
yy

(2.9)

(2.10)

(2.11)

(2.12)

(2.13

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)




3. _One Half-Plane Resting on Another.

We begin by considering the case where one half-space rests upon the other

the loading being assumed to be such that they alwcys remain completely in

. contact. The half-space y > 0 is assumed tc be occupied by material with rigidity

é § moduius Gl and Poisson's ratio Nys while the half-space y ; 0 is assumed to be
j. g occupied by material with rigidity modulus G2 and Poisson's ratio Ny In
é f conformity with equation (2.4) we write Ky = 3 - Anl, Ky = 3- 4n2. The
g boundary conditions in this case are
ﬁ uy(x, o) = uy(x, 0-) (3.1)
f cxxy(x, 0+) = 0, oxy(x, 0-) =0 (3.2)
;
oyy(x, 0+) = cyy(x, 0-). (3.3)
; We suppose that in the half-space y > 0 there is a distribution of body
forces and that there is a displacement field {u;(x, v), u;(x, y)} iny > 0
: which has the correct singularities to describe this distribution. From

equations (2.8), (2.9), (2.15), (2.16) we see that we can describe the displace-

ment field in the composite solid by the equations

(e, y + texte M4, - Thea, - Bplelyle Y e o w1,y 05

1
ux(xs y) = '
. -1 -1 £ , .
iFX[E T{A) + « )7 (A, + Bz)ialy}e ]y; L > x], y < G
' . -1 -1 -if ] . .
u;(x, y) + ¥*([|g] {B) - x; (& - Bglyle "’y; & Xly, ¥y > U
u x, y) =
¢ F*[IEI-I{B - K—l(A + B )|£|y}e|£ly- £ -+ x) y <0
2 2 %2 2 ' ’ ' )

The boundary conditions (3.1) through (3.3) then lead to the relatious
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By(£) = B,(&) + |£{v(®)

e

> =21

(g + DAJE) + Gc) = DB () = = 1,677 (6)
»czlcz{(nz - DA, () - (k, + 1)B,(E)} = lecl{ (g = DA (E) + (g + 1)B,(E)} - G(E)

connecting the unknown functions Al(g), Az(g), Bl(g), B,(¢) with the known

funccions ﬁ(g), 7(£), 6(£) defined by the equations

; v(g) = F[u;<x, 0); &]

ﬁ ; W(E) = Flop (x, 9); ] (3.4)
! = ey o

F ; O(g = F[Uyy(x: 0); E]'

We may write the solution of these equations in the form

S K, = 1 . 1.
= Ay (E) = - Ef‘i"I {ley + DEE) = DIE[T(E)) = 1,673 (E) (3.5)
Bi(£) = (¢, + DE(E) - D|g|V(x) (3.6)
:; Kz -1 ~
E % Ay(E) = (k, = DE(E) - ‘;;—;—1' (D - |z|v(E) (3.7)
- ]
Ey(8) = (k, + DEE) - (D - D]g]v(e) (3.8)

where the function f is defined by the equation

AT AR AL v e

£(5) = 3061 (6(0) + («, = D)) (3.9)

>~d the constants T and D by the equations

62 (Kl + DT
N G N P O (3.10)
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It follows immediately from equaticns (2.18) and (2.20) that
u (X, 0=) = F(k, + 1)Dw@) - (D - 1)uO(x, 0+) (3.11)
y 4772 y
r - = o - \ o -
Vyy(x, 0-) D[cyy(x, o+) + (Kl l,oxy(x, 0+) - s(x)] (3.12)
where the functions w(x) and s(x) are defined by the equations
E = o log -1,A -
w(x) = G, FX[[£] 7 {0(8) + (¢, - T(E) }; x] (3.13)
4G2 )
s(x) = —77% Fx[lglv(E); x], (3.14)
2
When u;(x, 0, o:y(x, 0, ogy(x, 0) are known we can calculate w(x) and
; s(x) from these equations. e may derive a formal expression for s(x) as
$ foliows:
9
: Since
£ -1
; F(v(2/m)x "3 E] = 1 sgn &
é it folloys that
~ 1 (7 £(e)dt
* M = e b ov——
F¥[1 sgn £ V(E); x] HJ gl
HF -
§ Also
/ * I . =9 s . .
% Fr(]elv(g); x]) = Fx[i sgn £ v(£); x]
so that we obtain the formula
o
3  u (t, 0)dt
% sy = 4 2
| R e .15
L,
1 g In rcertain cases it is possible to choose the ve:ztor (ui, u;) in such a
E g way that for ay; value: of x
H
]




B Lt ho W g o s . ST A s rh e s T rw CTRSTLE ah W 2T e 2 -

u;(x, 0) = 0, ciy(x, 0) = 0, (3.16)

when
] v(g) =0, 7(g) = 0

. \ f
for all values of £- In that case the equations (3.5) through (3.9) are

replaced by l

(<) = (K, + 1)

! 14,(8) = - T 1% DG;la(g) \ (3.17)
| 1
B, (£} = S(c. + 1)DG.Y5(e) (3.18)
! ALY ALY 2 ole y
|
1 A0 = 3k, = 1)DG; 5 (g) \, (3.19)
% i 1 1
| B,(5) = 3(e, + 1)DG; %5 (&) (3.20)

\ ! |
| and the displacement field is given b? the equations
‘ \

| \

i

\ \

a (k, + 1D |
. ) 2 -1 -1 A -
= u (x, y) T, FD G, F*[1g “{c; - 1 - 2iily}o(5?e 15001, (v > 0)
\ ux(x, y) =¢
' %DG;lF*[iE-l{Kz -1+ 2|s|y}8(e)elgly; £+>x]1  (y<0)
A \ |
3 \
1 ] (¢, + 1)D ‘
o) -1 -1 . -l
O N T T & Pl fe| My 1w 2l lyidee 18155021, (5 > 0)
3 uY(x, y) =< | \ |
& ‘. o S ST R PO B TR FICOPALL LI S B OIS

The ccrresponding =xpressions for components of the stress tensor are
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( - ~
o:h‘(x, y} = (1 - DYF*{(1 -~ |g|y)e 'glyo(i); £+x], (y>0) (3.21)

Oxx(x, y) =¢

or+1(1 + [g|vel S5 & » xi, (y < 0)
’i ] l§
i ‘ ogy(x, y; - (1 - D)y F*[i&e-lg!ya(g); £ > x], (y > 0) (3.22)
Oy (s ¥ = | ;
yDF"iiEelg'yc;(E); £ - x] : (y < 0)

”’

, ~leglya
ogy (o W) = (L= DB+ (5]t > x] >0 (3.29)

+ x] ‘ (y < 0),

Lol

pr*i (L - Jelyel 15y

It should be noted that

[}

o ., |
oyy(x, 0-) = oyy(x, 0+) Doyy(xﬂ o) ,

As a particular case we consider the stress field due to a point force

f X, -Y), \x >0, Y » 0 acting at the point (0, c¢), ¢ > 0'in the upper-half
; plane (cf. Fig. 1). It is obvious
! Plx.y)
) B4
¥ s \
‘ (0Nl
A
‘ 1
-.._)—x
| 5
Y 4
g (0,9 X

Fic 1
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F from symmetry considerations thet if we consider the displacement field due
; te this point ferce and to the point force (X, Y) at (0, -c) we get a field
which satisfies the conditions (3.16).
g Using the well-known expression for the displacement due to a point force
X
f 3 (see, e.g., Love, 1944, p- 209) we can easily show that the components of this
1 displacement field are given by the equacions
k!
.
2
z ; u(x, y) = - — log(r.r,> + 2 C)z + L)Z
- x oY 2n(<, + 1)G, [17°8'F 172 2 B
34 1 1 r r
- 1 2
ﬂ xY y-c¢ _ytc
Tnlc, ¥ DG, | 2 2 (3.24)
= 1 2
0 - xY y-c,y*tc
uy(x, y) 21T(|<1 + l)Gl r2 + r2
1 2
i v 211 1
; + e+ 1C Kllog(rllrz) tx (737 (3.25)
¢ 1 1 1 2
H
where r and r, ate defined by the equations
r 2
E r2 = xz + (y - c)z, r2 = x2 + {y+ )
k.
y

Y L

From these expressicns we 1n turn deduce that rthe components of the

stress tenscr are given by the equations

e S Y
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11
[ 2 2]
o I ¢ S 1 .1 (y = ¢) v+
O ) = (e, + D (p +3) ) + 2 4 = =
L 1 %2 i Iy J

Y _ iy-c_yte| _ 2 ]y ~c _ytec
e, + 0 | &1 1)\ 2 2 o ﬁ % Z } (3.26)
1 r, 2

o R X _ y-c¢ ,yv+c ,L2]y~ec v+ e
Oy s V) nG, D | "1 ”{ 7t } oo { K
1 2 1 2

2 2
—x TR P S G- G+
+2n(;<l+1) ;=1 272 “‘{ X X ? (3.27)
! 1 5 1 2

2 2
¢ N 7. S (PO .1 (y =~ ¢) (y + ¢)
Oyy(¥s ¥) 2rc, + 1) (e = 1) 27 7)" ‘*{ & T
1 2 1 2
Y y-c¢c_y+ce| _ 2 /)y -¢ _ytce
+————-——---—-2"('<l ey (Kl + 3) r2 > 4x { r& r4 } (3.28)
1 T2 1 2 ],

In particular we confirm that the conditions (3.16) are satisfied and that

2 X ¥ <L X
AR T o Dl L S B B BN

Y [d a'xz

- ;?:Ij:—Ii (Kl + 3) xz ] 7T — (3.29)
¢ (x° + ¢
whose Fourier trausform is readily shown to be
&(E) = X [(Kl ~ 1)1 sgn & ~ Zi:EIe-Cigi
J(ZW)(Kl + 1)
Y . --;59

EEEDICHERY [Grp + 2+ 2eiele 700 (3.30)
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It should be noticed that the value of the ratic X/Y cannot be chosen
arbitrarily in this problem since the tw. half-planes will remain in contact

only if oyy(x, 0) < 0 for all real values »f %, i.e. only if

(k, + 3+ (= et - @V , - el - (5 - <)} >0 (3.31)

for all real values of t.
The condition (3.31) 1is obviously satisfied irn the case in which X = 0.

The equations (3.21) through (3.23) then yield the equations

’

02 (6 ) = (1= Dy} (5, V) (v > 9 (3.32)
o, . (x, ¥) =<
xx 2
Dcxx(xs y) ’ (y < 0),
°§x(x’ y) - (1 - D)oiy(X. Y) (y > 0) (3.33
o, (x, y) =
xy ”
! Dc;y(x, ¥) (y <0,
0 1
- - Y > .34
( | Uyy(x. y) -~ (1 D)cyy(x. y) (y > 0) (3.34)
g X, y) =
yy 2 _
Dcyy(xa Y) (y * O)J

where with the notation

16 18,

x+ 1y - ¢) = e, x + i(y + ¢) = e (3.35)
we have
1 Y c 4*2
T o mmeem————— < - — ! - o2 -+ o A
O By [2(|<l + l)smezcose2 = e, = 3cos29, 2.05692} 5 sin362]
1 2 2 r2
1 Y . be .
g- = - «-u—l-———-; [(wl + l)sin262 -— cos352]
xy (el + D) t2




i3
; 1 Y 3 c ’c2
8 ; 4
e e well U + e
E Iy o Dr, [2(c; + 1)sin’p, + -;;(<l + 1)cos26, + 2 05492} + -;2-31113921
£ 2
LR S (2(k, + 1)sing cosze + < {(c, + 1)cos20. + 2cos48,} - ic—?-~xsi.tx36 ]
Oxx ~ 7lk, + Dr, 1“1 ° 1 17T ™ §€0) T ccosthy 2 1
3 1 1 1 rl
1 2 _ Y . be
3 ny = ——L__Yﬂ(v( Tt [(zl + l)sinzel + - c03361]
: 1 1 2
¢
2 Y 3 4c’
i Oy = m [2(:<1 + D)sin 8, - -r-l- {(Kl - 3)cosZe1 + 2c05461} + :-z—sin361] .
1
H 4. Two Half-Planes Bonded Together.
If the two half-planes are bonded together the conditions (3.1) through
;
. (3.3) are replaced by the condition that both the displacement vector and
; the stress tensor must be continuous across y = 0.
Usirg the same form for the displacement vector as before we find that
the continuity of ux(x, y) and uy(x, y) ony = 0 gaves the pair of equations
{
: A, (&) = A (6) + ige(g) (4.1)
P B,(3) = B(£) + |e|v(e (4.2)
where v(f£) 1e defined in (3.4) and
G(e) = Flu(x, 0); &)
Similarly the continuity of the stress components o'xy(x, 0), Jyy(x, 0) gives
the pair of equations
K,

" T —~—

BANEAT




From these expressions and the formula
-1 . .
F[:yy(x, 0-); €] = =, G,[(, = DA, (g) - (<, + 1}B,(5))

we deduce that

if <1 1 7. 1“1 1] .
Flo_ (x, 0-); €] = -{ + Fro() + 5 ; = - iTisgngt (£)
yy 2T+ T "k, + rJ 2{T+xf "%, +7|
+ 6 L. _1 ]1&&(5) + 3¢ [ L ]!g!\?(r)
/, ™ - - 7 n I H o/
4 2[1 + Kyt Koy + 7 4 211 + <4 Kq + T
Similarly from the equation
-4 :
F[cxy(x, 0-); £l =x, G, isgng{(c, + 1A, (E) - (<, - l)Bz(E)}
we deduce that
K <
1 "1 )] . 1] "1 1 _
F[oxy(x, 0-);¢] = —5{1 T - ¥ r}r‘isgn go(g) + 5{1 TT + < ¥ I.]rx (£)
1 1 1 L 1 1 1 ~
'Zcz[l Tl T, * r]lgu(g) ‘262[1 g g ¥ r]l£|v(€)’

The expression for F[uy(xg 0-); £] can be written down direc:ly from equation

(4,4) since by (2.18)

Fiu,(x, 0-); €] = le; 8. (0,

If the conditions (3 16) are satisfied we find that

(x, 0-) = =T

o i 1 1 - o° (x, O+)
yy 2 vy

+
1+ <_{ K. + 0
1

i5
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Xy 94
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-~ .0
‘ 1 . 1 1G aux(xn 0)
i .
TFe g <, + rJ 2 ax
r «
ij_"1 11
==T v iP*{isgn £
2 [l + <1r K, + TJ

a(g); x],
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(4.6)

At a general poinr ir the composite solid the components of stress in this

case are given by the equations

Cxx{x; Y)

oxy(x, y)

o (x, y
yy< y

where the

equations

co (x
xx?

componen+s of stress in the upper

i

1

- -1
ex

-1

—é'ﬁ‘ Fritsgn £¢(1 - 225|y)¢l(£) +x

F*lg,(Ele

y) + Oix(x, ¥)»

: Y

1
Y) + ny(xo Y):

Y)9

“lElyy .

) PRl - 25£!y)¢1(6) + Klul(a>re'

(y >

(y <

(y »

0)

0)

0)

0)

0

,0)

4.7

(4.8)

(4.9)

hal€f-plane may be found from the

132

y
¥
171

——

E\re"L'y; £ » x]

(4.10)

(4.11)

(4.12)
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with
1 . K2 -
¢1(€) = -2{1 +T+_?l-f‘- G,izu(g) + S +T a(z) (4.13)
<2 « o
¥,() = 2|1 +K—;";-I': G,ita(g) - TT—;;I_‘ o(&) (4.14)
while those in the lower half-plane may be found from the equations
2 2 -1
o .. + oyy = 2.<2 F*[¢2(g)e|g|y; £+ x] (4.15)
2 2 -
oy = Oy = Ky PR+ 2[E[08,00) + w00 1eE1; £ o x] (4.16)
2 1-1
Oy = 3%y F¥lisgn £{(1 + 2[g]y)9,(0) + xyu,(8) jellY; £ +x] (4.17)
with
2K2 Klf
(f) = = —=— 3(E) - ————— § .
6,8 G F T Gigu(e) ~ 77 o7 o(g) (4.18)
2 A KoT N
11'2(5) = - m Gzlgu(g) + o F T a(E) s (4.19)
In calculating the auxiliary functions ¢l(5), ¢2(€), wl(E). ¥y (8) it is
often useful to make use of the formula
. BUO(X. 0)
- Jgu(g) = F———}Lr; g1 (4.20)
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R

To illus.vate the use of these formulae we shall again consider the

stress field due to a point force (X, ~Y) acting at the point (0, c) in the
upper half-plane,

Again we take u:(x, y) and u;(x, y) to be given by equations (3.24)
and (3.25). From equation (3.24) we find that the x~derivative of the tangential

component of the surface displacement is given by the formula

"]
G aux(x, 0) o _ _XXI o 2¢? _cir 1 Zgi (4.21)
2 X n(Kl + 1) R2 Ré "(Kl + 1) R2 Rﬁ
in which we have used the notation

R2 = x2 + c2.
We then ea$ily derive the formula

- - X _ -c|g|
G,18u(®) Vi) - (m1+1){K1(158n€) cicle
¥ ~clg] (4.23)

-7 - (.<1+1)°’5|e

for i£u(t) and we already have the formula (3.30) for 8(5),
Substititing from equations (4.23) and (3.30) into equations (4.13),

(4.14), (4.18) and (4.19) we obtain the formulae

(x,~1)« 2« K
. X 177749 1 1 2 - e

2 1 2
+
- Y (rl l)KZ -2 I + 1 CIE' e"Clt:I
(2r) - (Kl + 1) <, + T K2 + 1 1+ KlT
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Laga s 0

A T wp

<. ~1 2. K K
B - ‘x 1 2 _ ‘_—;_-— 2 ’C’Ei
S S ¢ P R XY Bt 2}"1(158“5) 2{1 N Kzﬂ.}ciﬁ e
k. (. + 1) K K
X 11 1 2 -c|E]
+7z21r)(x1+1) 1+«T +2{1+1+ |<1I'+,<2+ r}lclﬁe

2k, x K, (k,-1) K K
. Xr 12 1t | 2, 1 || -clel
¢,(8) = - T (7D (isgn&){K 3T T TeeT } - 2°15l'<2‘+1- ¥ ¢ r} e

2 1 1
. Yr .<l(r<1 + 1) N Ky . Ky |g|.] —c|g]
H2m)o(k, + 1) |2(L + &, ) 1+ <T@« +1(ciclle
1 1 1 2 J
¥ 2k («,=1) .~ K
. XT 1% 1 2 -c|g|
4D (2 (e t1) {1+|< T AT }133“5' T+ = w4r|2citle
1 1 2 1 2
) Yr (r1+1)'<2+ I Ky _ 1 \zclgle-clil
/(2'ﬂ)(»<1+l) Ky ¥ T \K2+ r 1+ KlI" .
]
For example, in the case in which X = 0, -uation (4.15) gives
1,2 2
:’Z(cxx + 0yy)
(
-l o {"yﬁ M S \clgﬁe-lgl(c- D,k ax
+ ¥ T
(21r)(|<1 l)u<2 -2(1 <11) 1+ K T & +T J
from which it follows that
1,2 2 _ X <
-é(oxx + oyy) = - o) (ylsln 61 + ) Y2c052 61)

where the constants M and Y, are defined by the equations

19



20

r
LY

- 1 . 1 “1 .2
= = =5 = - ~
1 2#(2(1 + Kl ) 2 2w<2(<1 + 1) {1+ <lr <2 + 1

Y

and r are defined by the first equation of the pair (3.35).

1° e1
Simi’arly from equatious (4.16) and (4.17) we deduce that

2
- . X - < _he
2(cxx - Oyy) = - ) [ylsinSGl y3sin61 + rl(y‘cos261 + 2y2cos461) r2 yzsin361]
1

2
2 _ Y c . 4ec
Xy - ) [Vlcos39l Y4c086, ;I(Yasinzel + 2y251n461) - ;E-
1

g Yzcos361]

where the constants Y_ and Y

3 , are defined by the equations

2 1 1
’ F: -
3 2m(x_, +T)Y "4 KZ(Kl + 1) {1+ Kl T K, + 1

2
+ 2K2 <2(20<2 + 1)

5. Griffith Crack at the Interface of Two Half-Planes.

We now consider the problem of determining the distribution of stress
in the vicinity of the Griffith crack, described by the relations
=l x4y y=0,
at the incerface of the two half-planes: y - 0 whicth 1s cccupied by elastic

material with :onstants G., K

1 and y - 0 which is occupied by elastic material

with <onstants Gz, Kz-
If we assume tha~ the wupper and lswer faces of the crack are each subjected

to a pres-ribed pr:ssure p(x), we gee that inside the crack area we have the

conditions

o,
-
%
[o=]
+
-
it

g (x, 0-)
y

-p(x), fxl < 1. 5.1
yy y p(x); (5.1)

(.
.
£
3
N
L]

(5.2)

o -)
xy(x, 0-)

I
<
x
—

-
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and that on the region of the interface outside the crack we have the conditions

u (x, 04) = u (x, 0-) |x| > 1, (5.3)
uy(x, 0+) = uy(x, 0-), |xj > 1, (5.4)
oyy(x, 0+) = oyy(x, 0-) |x| > 1, (5.5)
oxy(x, 0+) = oxy(x, 0-) |x} > 1, (5.6)

Adopting the notation

( -1 -1 -
iF*(E “{A] -« (4 - Bl)|€ly}e |£|y; £ -+ x], y>0 ,
u, (x, y) = (5.7)
tre(elia, + A, + B 1113 }elgly_ £+ x) <0
‘ 2 T Ko W T BN 35 ’ y
'%*[|€|-1{Bl - KII(AI - Bl)|£|y}enlg'y; £+ x], y>0
u (%, ¥) - (5.8)
F*[lgl-l(n - K-{A + B )]5|y}el£ly' I3 +x] <0
2 2Y2 T 2 J ’ y

we see from equations (3.13), (3.20) that the conditions (5.1), (5.5) together
imply that

Kl(KZ - l)I‘A2 - Kl(K2 + 1)PB2 = KZ(Kl - l)A1 + Kz(Kl + l)Bla

Similarly from equations (3.12) and (3.19) we see that the boundary conditions

(5.2) and (5.6) are equivalent to the equation

Kl(Kz + l)T'A2 -k, (k, = l)I‘B2 = ~K2(K1 + l)A1 - K2(Kl - 1)B

1'72 1

Solving these equations for A2 and B2 in terms of Al and B1 we find that

1 . 1,
KIPAZ(E) = '§(Kl<2 + l)Al(E) - 5Ky, = I)Bl(E) (5.9)

1 1
KlPBZ(E) = -§(<1<2 - l)Al(E) ~ E(K <y + l)Bl(E) (5.10)

1




! _ \ - : 22
from %hich we deduce immediately that . \
-1 V-1
) (A2 +B)) ='-T (A1 + Bl)
1 " \
| ] j
Now from equations 35.7) and (S.8) we see that t%e boundary conditions

(S.B)Hand (5.4) are equivalent to the conditions

l
'

reisTlia @ - 4@ 1 = 0 %] > 1, . \
g TN ) - By k] =0, x| > 1,

rosﬂ%ctively, and using equations (5.9}, (5.10) we may reduce these in turn to
[ .

-1 1 1 )
! FA4E “{l 0+ i(“lfz + 1)]%1(5) + 50k, ~ 1B (E)}; x] = 0, |x| > 1 (5.11)
1,1 ‘ | 1
F*[|£] {i(xlkz - 1»Al(€) + [Klr + E(KIKZ + l)]Bl(E)}; x] = 0, |x| > 1. (5.12)
\ ‘
) \‘ |
Using equat¥on (2.13) we see that the condition (5.1) is equivalent to

\
Fe[(, = DA (§) + (k) + 1)B,(8); x] = chilp(x). \ |x| <1 (5.13)
\

and that using equation (5.12) that (5.2) is equivalent to

A
\ \

P*[1egng{(c, + DA (8) + (c; = DB (8); x] 0,  [x] <1, " (5.14)

j
If we now express Al(E) and Bl(g) in terms of two new functions ¢(£) and

y(£)! through the cquations |
i

€00, % D+ 6 DA = [T ¥ 500, + DIKE = 50k, - DYE (5.15)
€ (6, + YL+ & DB (E) = = Bleye, = DO + [T + 3k yx, + DI (5.16)

|
we ray reduce the equations (5.11) througp (5.14) to the set of simultaneous

dual iﬂtegral equatiors X |



'!

\

Frlap(8) + pY(E); x] = £(x), | Ix} <1 \

. !
FA[1sgnE{Bé () + ap(£)}; x] r 0, x| <1 . \ (5.17)
F*{i£-1¢(€); x] = 0, |x| > 1
Pl s xl =0, x> 1

PRp——

in which ¢ and B are constants defined by the ‘equatione

H

a = (Kl - 1r - (lcz -1), B = (K'l + 1)r + (Kz +1), . (5.18)

and the function f(x) may be calculated from the prescribed function p(x)

\
by means of the equation ‘
- - i
£(x) = {6 (c, + 1) (1 + &, 1} p(). L (5a19)
\ ] !
It should be noted that
8% - a? = 4(c, + YL + &,T) \x : (5.20)
2 1 \ b

|
\ !
Theae equations may be solved by standard methods; their solution and
its implications for fracture mechanics will be cons;Fered in a future publication.
)
\
%c 18 of interest to note that theé soluvion of these equations may be

reduced to that of a singular integral equation by the following dewice:
‘ If we integrate, with respect to x, the first two Aquations of the set

(5.1%) ve see that they can be written in the alternative form
\

aPA[46710(6)5 %] + 8F*[1sgng. [§[0(0); ] = F0) + ¢,

!

aF*[1sgn. 1£70(6); x] = 8P || u(e); 1 =

where \ and C

\ 1 are arbitrary constants and F'(x) = f(x). Now if we lef

2

Fe[1271(E); x] ~ OB - %),

F(|g]"tu(E); x] = ¥(OHA - x), \



we automatically satisfy the third and fourth equations of the set (5.17),

and can write these last two equations in the form

1
¥(t)de
ad(x) + % [-1 —é—%—; = F(x) + C,, |x| <1
a [F o)
= I~l ¢~ B¥(x) = C,, Ix| <1

in integrals being interpreted as Cauchy principal values. If we write
ad(x) - 18¥(x) = X(x), C; +1C, =y

we may write this pair of singular integral equations as the single equation

1
xm)+%j KR L p(x) +,
=1

X

6., Elastic Half-Space Bonded to a Rig;d Foundation.

We now consider the special case when the lower half-plane is rigid.
In the elastic medium y > O with constants G and k, we may take as the

displacement field

u, (x, y) = u:(x, y) + F*[iE-l{A - K-l(A - B)IEIy}e-lsly; £+ x]

%m.w-uymy)+wnd4w-<4m-nnnﬂ5“”;s»ﬁ
for which

gy (Xs OF) ozy(x, 0+) - « 2GP*[1sgne{(k + 1A(E) + (x - 1)B(E)}; x]

0,y (Xs O4) = 69, (xy O) = CLeRR[(k = DAGE) + (x + 1)B(E); x].

24

(6.1)

(6.2)

(6.3)

(6.4)



conditions

with

(6.2) become

) 25
Here again, the displacement field (u;, u;) has the correct singularities
to describe the distribution of body forces in the elastic half-gpace.
If the elastic medium is bonded to the rigid foundation we have the
ux(x, 0+) = uy(x, M) =0
which from equations (6.1) and (6.2) are equivalent to the pair of formulae
A(E) = 1Eu()
B(E) = - |E|¥(&)
8(8) = Flug(x, 09 £, ¥(5) = Flul(x, 04); £]
for the determination of the functions A(¢) and B(f). Equations (6.1) and
—1 - -~
u (x, ) = w2, y) - B - Helyde s 6
-y mritge B ¢ 0 (6.5)
-1 - ~
uy(x. y) = u;(x. y) =« "y F*lige |€]yu(é:); £+ x]
- Fx[{1 + K-llgly}e-|5|y6(g); £ + x] (6.6)
Using the convolution theorem for Fourier transforms we may write these
equations in the form
0 ® )
ux(x, y) = ux(x, y) - J_Q{Gl(x -t,y) - G2(x - t, y)}ux(t, 0)dt
- j G3(x -t, y)u:(t, 0)dt, 6.7)
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u(x, y) =u(x, y) - | G.(x-t; y)ul(t, 0)dt
y > Y y » ¥ - 3 s ¥ b

- jﬂ {cl(x -t, y)+ Gz(x - t, y)}u;(t, 0)de (6.8)
in which the functions Gl’ G2’ and G3 are defined by thz equations

2 _ x2 2 2
G, (x, y)-——zl—-z-. G, (x, y)--‘*:ﬂ"'--------)—2 » Gy(x, y)-—-—?——p- (6.9)
m(x“ + y°) K“(xz + y2) kn(x” + y°)

If there is a Griffith crack |x| < 1 at the interface between rhe elastic
half-space and the rigid foundation the basic boundary value problam to be
solved is:

o (x, 0) = -p(x x| <1
yyo)P)oll

oxy(x. 0) = -q(x), |x| <1

) u (x, 0) = uy(X. 0) =0, |x|] >1

In this case the solution is given by equations (6.1), (6.2) in which A(E)

and B({) satisfy the dual integral equations

F*[(c = 1)A(E) + (¢ + 1)B(E); x] = i(x), x| <1
F*[isgni{(x + 1)A(E) + (x - 1)B(E); x] = g(x), x| <1
Pe[1e"1aE) 5 x] = o, x| > 1

re(]€|"BE); x] = O, x| > 1

where

-1 o]
f(x) = kG “{p(x) + oyy(x, o+) }

8(x) = xGla(x) + of (x, 04))

This is precisely the problem encountered in §5,

DR Con b At e e e g
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